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ABSTRACT

An Optical Lattice Clock with Spin-1/2 Atoms

Report Title

An optical lattice clock probes a spectrally narrow electronic transition in an ensemble of optically trapped, laser-
cooled atoms, for use as a time and frequency standard.  To date, several lattice clocks have been demonstrated with 
superior stability and accuracy compared to primary frequency standards based on microwave transitions.  Yet, the 
question of which atomic system (including the element and isotope) performs best as a lattice clock remains 
unsettled.  This thesis describes the first detailed investigation of an optical lattice clock using a spin-1/2 isotope of 
the ytterbium atom.  A spin-1/2 system possesses several advantages over higher-spin systems, including a simplified 
level structure (allowing for straightforward manipulation of the nuclear spin state) and absence of any tensor light 
shift from the confining optical lattice.  Moreover, the ytterbium atom (Vb) stands among the leading lattice clock 
candidates, offering a high performance optical clock with some degree of experimental simplicity.  The frequency 
stability of the Yb clock is highlighted by resolving an ultra-narrow clock spectrum with a full-width at half 
maximum of 1 Hz, corresponding to a record quality factor Q = ?0/?? = 5 x 1014.  Moreover, this system can be 
highly accurate, which is demonstrated by characterizing the Yb clock frequency at the 3 x 10-16 level of fractional 
uncertainty, with further progress toward a ten-fold improvement also presented.  To reach this low level of 
uncertainty required careful consideration of important systematic errors, including the identification of the Stark-
canceling wavelength, where the clock’s sensitivity to the lattice intensity is minimized, a precise determination of 
the static polarizability of the clock transition, and the measurement and control of the atom-atom collisions.
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iii

Lemke, N. D. (Ph.D., Physics)

Optical Lattice Clock with Spin-1/2 Ytterbium Atoms

Thesis directed by Dr. Jun Ye

An optical lattice clock probes a spectrally narrow electronic transition in an ensemble of

optically trapped, laser-cooled atoms, for use as a time and frequency standard. To date, several

lattice clocks have been demonstrated with superior stability and accuracy compared to primary

frequency standards based on microwave transitions. Yet, the question of which atomic system

(including the element and isotope) performs best as a lattice clock remains unsettled. This thesis

describes the first detailed investigation of an optical lattice clock using a spin-1/2 isotope of

the ytterbium atom. A spin-1/2 system possesses several advantages over higher-spin systems,

including a simplified level structure (allowing for straightforward manipulation of the nuclear spin

state) and the absence of any tensor light shift from the confining optical lattice. Moreover, the

ytterbium atom (Yb) stands among the leading lattice clock candidates, offering a high-performance

optical clock with some degree of experimental simplicity. The frequency stability of the Yb clock

is highlighted by resolving an ultra-narrow clock spectrum with a full-width at half-maximum of

1 Hz, corresponding to a record quality factor Q = ν0/Δν = 5 × 1014. Moreover, this system

can be highly accurate, which is demonstrated by characterizing the Yb clock frequency at the

3 × 10−16 level of fractional uncertainty, with further progress toward a ten-fold improvement

also presented. To reach this low level of uncertainty required careful consideration of important

systematic errors, including the identification of the Stark-canceling wavelength, where the clock’s

sensitivity to the lattice intensity is minimized, a precise determination of the static polarizability

of the clock transition, and the measurement and control of atom-atom collisions.
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Chapter 1

Introduction

This thesis details the first experimental investigation of an optical lattice clock using an

isotope with nuclear spin I = 1/2. While lattice clocks based on atoms with higher nuclear spin [1]

and with no nuclear spin [2] have been demonstrated, here we highlight a few special properties of

a spin-1/2 system. To set the stage for this discussion, we will first review some basic principles of

atomic clocks, followed by a brief discussion of several applications that call for higher-performing

atomic clocks. Then, in Sec. 1.4, we will examine why a spin-1/2 system may be the best choice

for state-of-the-art timekeeping with an optical lattice clock.

1.1 Atomic clocks

Since 1967, the unit of time in the International System of Units (SI) has been defined

in terms of the energy difference between the two lowest states of cesium atoms [3, 4] 1 . This

definition is realized in the laboratory by steering a microwave oscillator to stay resonant with

the Cs atoms while simultaneously counting the number of oscillations (“ticks”) that have passed.

Atomic transitions are ideally suited for timekeeping because the atom’s energy levels are largely

immune to environmental effects. Because microwave radiation oscillates very quickly (about 10

billion times per second), each cycle is short in time, allowing for highly precise measurements

of time and frequency. Today’s Cs primary frequency standards are extremely accurate, with

uncertainty at just a few parts in 1016 [5, 6, 7, 8, 9, 10]. This is equivalent to saying that the clock
1 Specifically, the definition of the second is “the duration of 9 192 631 770 periods of the radiation corresponding

to the transition between the two hyperfine levels of the ground state of the caesium-133 atom” [3].
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2

would neither gain nor lose one second in 100 million years.

This exceptional accuracy is made possible by the stability, or precision, of atomic clocks.

Two figures of merit that largely determine the stability of the clock are its resonance quality factor

(Q = ν0/Δν) and its measurement signal-to-noise ratio (S/N). The quality factor is a dimensionless

quantity that gives the width of a resonance, Δν, in comparison to its center frequency, ν0. For

the best Cs clocks, a linewidth of 1 Hz results in Q = 1010. The S/N is also dimensionless, and

it gives information about the fidelity of each measurement. In general, there are many sources

of noise that could diminish this quantity, but under certain conditions it is possible to reach the

“standard quantum limit” of S/N=
√

Natom with Natom the number of atoms interrogated. For a

typical value of 106 atoms, the S/N is 1000. The product of Q and S/N gives the fractional precision

(here, 1013), which is indeed not far from the typical stability of Cs fountain clocks [5, 9]. This

means that after just one measurement (lasting approximately 1 second), the frequency has already

been found to 13 digits, and subsequent measurements strung together will continue to increase the

combined precision. With this level of stability, it is possible to quickly and thoroughly evaluate

possible sources of systematic error and to compare two clocks to see how well they agree.

To achieve this level of inaccuracy has taken more than 50 years of scientific and technical

advances. One very important step along the way was the advent of laser cooling of atoms [11, 12]

and its application to atomic clocks [13, 14]. The key advantage to cold atoms lies in their slowed

velocity, which results in longer interaction times and reduced Doppler shifts. State-of-the-art

microwave clocks typically use a fountain geometry, in which a ball of laser-cooled atoms is tossed

straight up before falling back under gravity. This atomic fountain, which is very successful at

canceling Doppler effects [15], is made possible by the ultracold atomic temperature.

So what limits the accuracy of cold-atom microwave fountain clocks such as NIST–F1? The

full answer includes a long list of systematic effects, each of which needs to be evaluated to smaller

and smaller levels of uncertainty. But with a fixed Q and a clock stability approaching its fun-

damental limit, smaller uncertainties require longer averaging times, and eventually this becomes

impractical or even impossible. For this reason, it is interesting to consider atomic systems with
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3

potentially higher stability, which in turn offers the possibility for a corresponding reduction in

absolute uncertainty.

1.2 Optical clocks and the optical frequency comb

The clearest path for developing a higher stability clock is to use a higher frequency transition.

Optical transitions (so-called because they absorb and emit light visible to human eyes) have

frequencies in the hundreds of terahertz range, or nearly 100 000 times higher than microwave

clocks. These optical clocks thus offer tremendous advantages for improved time and frequency

metrology, and sometime (perhaps in the next 10 years) the SI second will be redefined in terms of

an optical clock transition.

In the past, one disadvantage to optical frequency standards was the lack of an optical

clockwork — a way of counting the ticks [16, 17, 18, 19, 20]. Because optical frequencies are so high

(1015 oscillations per second), standard electronic counters cannot be used. Around the year 2000,

this problem was solved by the development of the optical frequency comb, for which a portion of

the 2005 Nobel Prize in physics was awarded [21, 22, 23, 24, 25, 26, 27, 28]. The optical frequency

comb is a pulsed laser that outputs very short pulses of light. Each pulse is composed of thousands

of laser modes that form a grid (or a “comb”) in frequency space, much like the fine tick marks on

a ruler that allow for precise length measurements (see Fig. 1.1(a)). These optical frequency combs

are useful both for comparing two optical clocks at different frequencies and for dividing an optical

signal to the microwave domain where it can be counted, and they have enabled vast progress in

the field of optical frequency metrology over the last decade. We will consider the comb in slightly

more detail in Ch. 7.

The basic scheme of an optical clock is shown in Fig 1.1(b). A laser is electronically stabilized

to a high-finesse optical cavity, and the cavity-locked laser comprises the clock’s oscillator (typically

called the local oscillator, or LO). The optical cavity is designed to have a very constant length

(i.e., the distance between the two reflecting mirrors), as the length stability of the cavity directly

determines the frequency stability of the laser. While the optical cavity provides an excellent means
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Figure 1.1: a) Time- and frequency-domain depiction of the frequency comb output. b) Block
diagram of an optical clock. c) Relevant energy levels in Yb.
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5

for reducing the noise of the laser, it does not provide a good long-term reference (nor is its length a

fundamental physical quantity with which to form a universal standard), so an atomic system serves

as the long-term frequency reference. Specifically, light from the cavity-stabilized laser probes an

optical transition in the atomic system, and electronic corrections are applied to the laser frequency

to hold it on resonance with the atom(s). The final component in the optical clock scheme is the

optical frequency comb, as mentioned above, which acts as a frequency counter by accumulating

trillions of oscillations on the optical signal before outputting a “tick”.

Two competing technologies for the atomic reference are currently being pursued at metrology

labs throughout the world: trapped-ion clocks and optical lattice clocks [29, 30]. While there are

a number of factors that will play into the ultimate decision of which atomic system becomes

the new standard, not to mention which system(s) will perform best as a portable device for

commercial and space applications, it is likely that both types will find useful applications. Let

us first examine the potential stability of these systems. Trapped-ion clocks typically interrogate

one electrically-charged atom, confined by RF electromagnetic fields and cooled to its motional

ground state [31, 32, 33, 34, 35, 36, 37]. These ion clocks have thus far been limited to one clock

atom because of the possible clock errors due to Coulomb repulsion between multiple atoms. For a

single-trapped-ion clock, atomic spectra of few-hertz width [38, 39] and a S/N of 1 yield a fractional

precision of 1014 in a single measurement.

Optical lattice clocks, by contrast, interrogate an ensemble of laser-cooled atoms confined in

an optical potential [40, 41, 42, 1, 43]. This optical potential is formed by a standing-wave laser field

known as an optical lattice and is tuned to a specific wavelength (the “magic wavelength”) where

it does not perturb the clock frequency [40, 44]. Just as with ion clocks, the resonances in lattice

clocks can be very narrow, leading to similar Q-factors of 1014 or higher [45, 43, 46]. But, here the

large number of quantum absorbers results in a S/N of 100 to 1000, leading to a potential precision

exceeding 1017. From these considerations, we can see the optical lattice clocks have the potential

for 10,000-fold improvement in stability over microwave clocks. Moreover, as we will see later in

this thesis, these systems also possess the potential to be highly accurate, making them excellent
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candidates for state-of-the-art metrology. However, we also note that many of these gains have yet

to be realized. Due to technical noise sources, the stability of lattice clocks has not reached the level

mentioned above, but is instead similar to that of the ion clocks [47, 1, 48, 46]. Moreover, the best

accuracy demonstrated so far [1, 49, 43, 50] is only slightly better than that of the best microwave

clocks, and significantly worse than that of the best ion clocks [36, 37]. So while these lattice clock

systems remain tantalizing, there are still many significant obstacles to overcome. In this thesis,

we will examine some of these obstacles and demonstrate some new techniques to overcome them.

1.3 Applications for ultra-precise clocks

Many of today’s technologies in communications and navigation (notably GPS) have been

enabled by atomic clocks, and it is expected that the vast improvements in timekeeping offered

by optical clocks will further enable new technologies. While it is impossible to fully predict what

scientific and technological impact optical clocks will ultimately have, we can already list some

known applications for these higher-performing clocks. Following are a few of the most significant.

i) Variation of constants

The search for time-variation in the fundamental constants is an active field of research in

which atomic clocks are just one piece, albeit an important one. There are several reasons to

search for such variations, ranging from tests of new cosmological and unification theories to

explanations for the “fine-tuning” question of why the current values of fundamental constants

are capable of supporting life on earth [51, 52, 53]. While astronomical data are useful for

assessing the values of fundamental constants in the distant past, laboratory searches offer

precise measurements of the current drift rates in a highly controlled setting. Unlike microwave

transitions, which are primarily sensitive to changes in the electron-proton mass ratio (μ =

me/mp), optical transitions are primarily sensitive to changes in the fine structure constant,

α = e2/(4πε0�c)[54, 55]. In fact, the tightest constraint to date on α̇ was set by the Al+

and Hg+ optical clocks at NIST [36]. Fractional changes in the clock transition frequency are
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related to changes in α by
δν

ν
= K

δα

α
(1.1)

where K depends on the atomic structure. Generally, lattice clocks do not have especially

high sensitivities (KSr = 0.06, KYb = 0.32, KHg+ = −2.94) so they may be most useful in

this regard by serving as “anchor” lines against which atomic systems with higher sensitivity

may be compared [56]. In the same manner, the Sr lattice clock transition, which has been

compared to the Cs microwave transition in several labs throughout the world, served as a

stable reference for constraining μ̇ in Cs [55].

ii) Testing relativity and the equivalence principle

Local position invariance (LPI), which is a consequence of Einstein’s equivalence principle

[57, 58], requires that the outcome of a non-gravitational measurement does not depend on

the value of the local gravitational potential. Space-born optical clocks could test this by

measuring the frequency ratio of two clocks of different species on a satellite and comparing

it to the value measured on earth. Alternatively, the ratio could be monitored as the satellite

traverses a highly eccentric orbit, thus modulating the gravitational potential in time. In this

case the constraints on the two clocks’ accuracies are reduced, though their medium-term (few

hour) stability must be quite good. These techniques are expected to improve upon the best

measurement of LPI by more than 5 orders of magnitude [59, 60].

Similarly, the absolute gravitational redshift could be measured with space-based clocks, either

with two clocks on different circular orbits, or with one clock in a highly-eccentric orbit and

one stationary [59]. Here the expected improvement from previous results is four orders [60].

Additionally, with a reference clock in space, earth’s gravitational field could be measured with

greater accuracy, enabling an improved mapping of the geoid [61].

Some unification theories predict that the values of fundamental constants are coupled to the

gravitational field, which would violate LPI. While this could be explored most neatly with a

deep space mission, it could also be observable on earth due to the ellipticity of earth’s orbit.
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Any absence of change in the clock frequency, over the timescale of earth’s orbital period,

constrains the possible size of these couplings [55].

iii) Low noise microwave generation

Photodetection of a femtosecond frequency comb, referenced to an optical clock, yields an

electronic signal at a harmonic of the repetition rate (typically chosen near 10 GHz) with

exceptionally low phase noise. While there are additional noise sources that can play a role,

these are tractable, and microwave signals whose noise properties are nearly as good as those

of the optical clock have been produced [62, 63]. The technical applications calling for these

low phase noise microwaves include the following: remote synchronization of large scientific

facilities such as synchrotron and accelerators [64, 65]; the local oscillator in a microwave clock

[66]; and very-long baseline interferometry (VLBI), in which signals at spatially separate radio

telescopes can be combined (with the help of a fine timing system) to yield exceptional angular

resolution in studying astrophysical phenomena [67].

iv) Realization of SI units

As mentioned above, the SI second is defined by a transition in atomic cesium, requiring Cs

atomic clocks to realize the definition. While some optical clocks have already demonstrated

superior repeatability compared to the best microwave clocks, they cannot, by definition, be

accurate. For this reason, the definition of the SI second will almost certainly be changed

someday to an optical transition, which will then require metrology labs the world over to

build new atomic clocks based on the particular optical transition selected.

With the speed of light defined to be exactly c = 299 792 458 m/s, the meter is then defined

as the distance light travels (in vacuum) in a time of 1/c ≈ 3 ns [68]. This definition can

only be realized accurately with a Cs atomic clock, which defines the second, together with

an optical frequency comb that links visible laser light with the microwave clock. However,

some optical transitions, including those of Hg+ ion and Sr lattice, have been recognized as

secondary representations of the SI second, which means they also can be used for realizing
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the SI meter. The accuracy gained by defining the second by an optical transition could, at

least in principle, lead to more accurate length measurements as well. With better measures of

the fine structure and Rydberg constants, it may be possible to someday realize other physical

quantities (like mass) with optical atomic clocks [69].

1.4 Spin-1/2 ytterbium atoms

The first proposal for an optical lattice clock called for spectroscopy of a narrow optical tran-

sition in ultracold strontium atoms [40]. Since then, experimental groups have begun researching

not only strontium (Sr) [70, 71, 72, 73, 74], but also ytterbium (Yb) [75, 76, 77, 78, 79] and mer-

cury (Hg) [80, 81] as lattice clock candidates. Because the electronic structure is very similar for

all atoms with two valence electrons, the lattice clock scheme could in principle be employed with

Be, Mg, Ca, Ba, Zn, Cd, Ra, and the synthetic element nobelium (No).

In these divalent atoms, the electronic structure can be arranged by symmetry into singlet

states and triplet states, and transitions between the two manifolds are generally forbidden. The

two clock states are the 1S0 ground state and the 3P0 excited state, and the radiative transition

between them is both spin- and dipole-forbidden. This gives the excited state a very long lifetime,

and potentially allows for the observation of an extremely narrow clock transition, which yields a

large Q-factor as discussed above. In fact, in isotopes lacking nuclear spin, the 3P0 lifetime has been

calculated to be a few thousand years [82]! While a long-lived excited state is an essential ingredient

in the lattice clock scheme, this is actually far too long to be useful, because the transition is too

weak to efficiently excite.

For this reason, most experiments use an isotope that does have nuclear spin. Here, the

hyperfine interaction perturbs the excited clock state (3P0), mixing it with other nearby states and

typically resulting in a hyperfine-quenched 3P0 lifetime of several tens of seconds [83, 84]. These

odd-mass-number isotopes are less abundant than the (spin-0) even-mass-number isotopes, but

usually the odd isotopes have sufficient abundance to carry out experiments.2 The amount of
2 One notable exception is Ca, in which the only odd isotope (43) has 0.135 % abundance.
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